;“ The Journal of Supercomputing, 13, 111-132 (1999)
‘~ © 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Parallel Computing on an Ethernet Cluster of
Workstations: Opportunities and Constraints

MOUNIR HAMDI hamdi@cs.ust.hk

Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong

YI PAN
Department of Computer Science, University of Dayton, Dayton, OH 45469-2160, USA

B. HAMIDZADEH

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, B. C.,
Canada V6T 1724

F. M. LIM

Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong

Editor: Hamid Arabnia

Abstract. Parallel computing on clusters of workstations is receiving much attention from the research
community. Unfortunately, many aspects of parallel computing over this parallel computing engine is
not very well understood. Some of these issues include the workstation architectures, the network
protocols, the communication-to-computation ratio, the load balancing strategies, and the data parti-
tioning schemes. The aim of this paper is to assess the strengths and limitations of a cluster of
workstations by capturing the effects of the above issues. This has been achieved by evaluating the
performance of this computing environment in the execution of a parallel ray tracing application
through analytical modeling and extensive experimentation. We were successful in illustrating the effect
of major factors on the performance and scalability of a cluster of workstations connected by an
Ethernet network. Moreover, our analytical model was accurate enough to agree closely with the
experimental results. Thus, we feel that such an investigation would be helpful in understanding the
strengths and weaknesses of an Ethernet cluster of workstation in the execution of parallel applications.

Keywords: parallel computing, ray tracing, networked workstations, performance evaluation

1. Introduction

Present trends in parallel computer development emphasize expensive technologies
and specialized architectural concepts. Currently, we observe a significant increase
of workstation performance and communication bandwidth, together with a shift of
market interest from mainframes to workstations. Networks of high performance
workstations are becoming increasingly available in companies and research insti-
tutions [11]. These networks of workstations may be considered as less expensive

112 HAMDI ET AL.

virtual parallel computers when used collectively to solve a single computationally
intensive task.

To fully exploit and understand the parallel computing power of such a virtual
parallel computer, many architectural and system issues have to be addressed and
investigated. These issues include the workstation architectures, the network
protocols, the communication-to-computation ratio, the task assignment strategies,
and the data partitioning schemes. The aim of this paper is to take a step towards
studying the strengths and limitations of a network of workstations as a function of
the above factors on a computationally intensive application namely ray tracing.

Today’s clusters of workstations are connected by various Local Area Networks
(LANSs). These LANs can be classified into two categories: point-to-point LANSs
and shared access LANSs. In point-to-point LANSs, such as Asynchronous Transfer
Mode (ATM) LANS, various communication sessions could be taking place at the
same time by various groups of workstations. This, in turn, can result in a high
network throughput. On the other hand, in shared access LANs, only one commu-
nication session could take place at a single instant. The communication protocol
characteristic can have a big effect on the performance of the whole network
especially when many workstations want to transmit messages at the same time.
Shared access LANs can be further classified into two categories: contention-based
networks and token passing networks. In Contention-based networks, such as the
Ethernet, when more than one workstation desire to access the network, message
collision could occur, and retransmission of the messages is thus needed. This
message collision is avoided in token-passing networks by proving a circulating
network token. Each workstation desiring to access the network must wait until it
captures the token. Thereafter, it can transmit its messages. Hence, the choice of a
network and its associated communication protocol has a tremendous effect on the
performance of a cluster of workstations [18].

The task assignment strategies employed in a cluster of workstations can affect
the inter-workstation communication and load balancing of the system. Two major
classes have been identified as static and dynamic task assignment strategies. In a
static scheme, all tasks are assigned to the workstations once, prior to run time.
During run time, the processors execute the assigned tasks. As a result, the
overhead due to running these scheduling schemes does not affect the overall
performance. They, however, fail to take advantage of valuable information about
the system and the tasks that become available at run time. In a dynamic scheme,
tasks are assigned to workstations at run time. Such schemes can benefit from
on-line information about the status of the system. However, they have to be
simple, since their running overhead can directly affect the system performance.

The data partitioning schemes in a cluster of workstations address the issue of
how to distribute the data among the local memories of each workstation. A major
consideration in data partitioning is the degree to which the data is replicated in
each workstation’s memory. Complete replication of data among workstation
memories reduces inter-workstation communication since each workstation, in this
scheme, has an entire copy of the data. This scheme, however, is inefficient in its
use of memory. It is also not suitable for applications that frequently read and
write into the data. In such applications all copies of the data have to be kept

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 113

consistent. Resolving consistency issues may lead to important performance consid-
erations. Reducing the degree of data replication among workstation memories will
lead to more efficient use of memory resources. Reducing replication, however,
may increase the inter-workstation communication. In such a situation, a task
assigned to one workstation may need to request data that reside on other
workstations’ memories. This can be costly, especially, when employing
contention-based networks.

In this paper, we study and model the performance of a ray-tracing application
using static and dynamic task assignment schemes on a cluster of workstations
connected by an Ethernet network. To keep the model simple and more compre-
hensive, we assume a replicated data partitioning scheme. A replicated data
partitioning scheme is viable, since this application is a read-only application. The
model and experimental studies are aimed at demonstrating the strengths and
limitations of these system choices for the parallel ray tracing application. As a
result, they can shed some light on the suitability of a cluster of workstations in the
execution of computationally intensive applications.

This paper is organized as follows. Section 2 gives a brief introduction about the
ray tracing technique. Then, in Section 3, we specify our system model and discuss
the parallel implementation of the ray tracing process. Section 4 details an
analytical performance model of our parallel application on a cluster of worksta-
tions that can be used to investigate the scalability of this computing environment.
In Section 5 we present extensive experimental results in order to assess various
issues that directly affect the performance of a cluster of workstations. Finally, in
Section 6, we give some concluding remarks.

2. Ray Tracing Application

In order to experimentally assess the potential of a network of workstations as a
parallel computing engine and to be able to analyze the various factors that affect
its performance, we have chosen a computationally intensive application from
computer graphics. This application concerns the generation of life-like images,
and is better known as ray tracing [4], [5]. By introducing color, shading and shadow
into a picture, it can produce high-quality graphics for accurate 3-D space visual-
ization. However, its large computation requirements make it inefficient on tradi-
tional single-processor systems even for generating simple pictures. In this paper,
various parallel ray-tracing solutions are investigated and are implemented on a
network of workstations connected by an Ethernet network.

When we are given a set of edges and /or surfaces, it is not difficult to create a
2D projection of these onto a screen. Figure 1(a) shows an example of this for a
cube. However, to determine those parts of the edges and surfaces which would be
visible if the objects were constructed from opaque material is a more complex
problem as shown in Figure 1(b) and (c). This has been termed the hidden surface
problem and techniques which provide solutions to this are known as visible
surface algorithms [5]. This kind of algorithms can be classified into two categories:
the image space algorithms and the object space algorithms. The image space

114 HAMDI ET AL.

(a) (b) ©

Figure 1. The hidden surface problem in image reconstruction.

algorithms work by first projecting the objects into the plane of the image, and
then manipulating those projections. The object space algorithms perform no
explicit projection, and each object is considered as a candidate for the visible
surface at each pixel on the screen. Ray tracing is an example of this kind of
algorithms. It applies the principles of geometric optics to determine how light rays
of infinitesimal width interact within the environment [4].

In the ray tracing process, rays are traced from the view point through each pixel
of the image screen into the object space as illustrated in Figure 2. As a ray enters
the environment, it intersects with objects and only the closest intersecting point
corresponds to the visible surface. The color of this point is mapped onto the image
screen. This process is performed pixel by pixel and the whole image is thus
generated. By extending the algorithm to incorporate reflections, refractions and
shadows within a common shading model, high quality realistic pictures can be
produced. This extension involves the trace of not only the primary ray, but also a
secondary ray called shadow ray which is traced from the intersecting point
towards each point-light source. If this ray intersects with any object, the original
intersecting point is determined to be in shadow with respect to that light source.
For reflective and /or refractive surfaces, secondary rays are traced in the direction
of reflection and/or refraction. Similar to the case for shadow ray, the interaction
of all these rays contribute to the final color of the original pixel.

Ray tracing is very much concerned with the determination of ray-object inter
section. In fact, researchers have already found that more than 90% of computa-
tion is devoted to this task in most scenes [4]. To determine a single intersecting
point may not be too complicated for a traditional serial computer. However, it
always happens that the generation of an ordinary scene may involve several
thousands of these calculations [3], [9], [14], [17]. To be concrete, let us consider a
simple ex ample. The SUN IPX Sparc processor with a clock-speed of 20MHz can
calculate a ray-sphere intersection in 466 processor cycles (worst case). For a scene
containing 1000 spheres and a resolution requirement of 512 X 512 pixels, we
roughly estimate the average number of rays traced per pixel as 6. This is

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 115

view point

iy Objects space

Image screen

Figure 2. A ray fired into the object space.

contributed by the primary ray, the shadow ray, as well as all other secondary rays
due to reflection and refraction. Just considering the cycles required to perform
the floating point calculations for the ray-object intersections, the time taken for
rendering that image is 512 X 512 pixels X 6 rays per pixel X 1000 spheres per
ray X 466 cycles per sphere X 50 nsec per cycle = 36000 seconds = 10 hours [4].

This simple example illustrates how computationally intensive the ray tracing
process can be. This is one major reason why we have chosen ray tracing for the
evaluation of a network of workstations. The second major reason lies in the
simplicity of parallelizing the ray tracing process. This simplicity facilitates qualita-
tive and quantitative performance analysis of a cluster of workstations—a major
goal of this paper. Next, we briefly discuss different techniques for task division in
parallel ray tracing.

There are two main approaches to task subdivision in parallel ray tracing,
namely object space subdivision and image space subdivision. Object space subdivi-
sion puts the focus on the object space which is being rendered and can be further
classified into two categories, namely space subdivision and object subdivision. In
space subdivision, the object space is divided into different subspaces, as illustrated
in Figure 3. Then, they are assigned to different processors to process the ray
tracing. As rays may pass through several subspaces during the tracing, there must
be interprocessor communication for such transfer of ray information.

Object subdivision introduces the concept of bounding volume. This is a volume
containing a complex object or a group of simple objects. A combination of these

116 HAMDI ET AL.

Subdivided objects space

Figure 3. A ray passing through several subdivided spaces.

bounding volumes can form a hierarchy which can facilitate the determination of
whether a ray will intersect with the objects that it contains. This avoids useless
intersection calculations with complex objects as shown in Figure 4. In fact, this is
an acceleration technique commonly applied in most ray tracers [4]. In a parallel
processing implementation, distinct groups of bounding volumes are allocated to
different processors and each processor is responsible for calculating the ray-object
intersection in the particular volume. As a ray will travel through the hierarchy
during ray tracing, information flow between processors is necessary.

In image space subdivision, the image plane is divided into several distinct
regions, and the processing of a number of regions is allocated to a particular
processor. It is just like partitioning the image into several small ones and letting a
number of sequential ray tracers trace them separately at the same time. As each
pixel on the image plane is independent from one another, and since each
workstation stores a copy of the entire image in its local memory, no interprocessor
communication is necessary in this approach during the computational process.

Each of the parallelization approaches illustrated above has its own advantages
and disadvantages. These advantages and disadvantages are a function of the
memory usage, computing /communication efficiency, ease of implementation, and
fault-tolerance [2], [10], [12]. For the purposes of this paper, we have chosen the
image space subdivision approach to implement the parallel ray tracer. This
approach can fully illustrate the weaknesses and strengths of using a cluster of

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 117

Root of scene

—— e = = = - = == - == — e e . —-—

object group

Primitive
object

Primitive Primitive

object

object

A bounding volume

Figure 4. A hierarchical representation of a scene.

workstation as a parallel computing engine. Moreover, as can be easily seen, image
space subdivision is better than the other approaches in terms of efficiency, ease of
implementation and reliability when implemented on parallel systems.

3. System Model And Implementation

The parallel program for creating ray-traced images reads a text file containing a
description of a scene to be rendered and produces a color image corresponding to
the description. A simple host/node configuration on an Ethernet network has
been adopted as our system model for developing a parallel ray tracing application
on a cluster of workstations. According to this model, every workstation node is
connected to the host workstation directly. A major characteristic of this model is
that the access to the network is mutually exclusive. This is a simple and common
model for a cluster of workstations. It may not, however, be the best solution in the
sense that a bottleneck may be introduced between the nodes and the host. As all
the nodes send back large blocks of messages to the host, a traffic jam may occur
and the performance may be affected.

The basic architecture of the parallel ray tracer consists of a host program and a
set of node programs. The role of the host program is to distribute the tasks among
all the allocated processors. It then collects the finished subdivision of the image,

118 HAMDI ET AL.

combining them to form the resultant picture. A node program is basically a
sequential ray tracer which accepts jobs in the form of horizontal scanlines (a row
of consecutive pixels).

To realize the message passing needed between the different processes in an
Ethernet network, the EXPRESS parallel computing environment is employed.
EXPRESS, developed by Parasoft [13], is a programming environment for writing
parallel programs for MIMD multi-computers, including networks of workstations.
It is simply a software layer which executes above the individual operating systems
of a networked set of autonomous computers. EXPRESS works by setting up
demons in a group of pre-assigned workstations. When the parallel process is
initiated, the demons come into effect and handle the required interprocessor
communication.

Static and dynamic strategies were implemented to investigate the performance
tradeoffs of different task assignment strategies for parallel computing on a net
work of workstations. A task in this application consists of processing a ray through
a pixel. The static strategy pre-assigns all the tasks to the workstations in one
invocation of the task assignment module. This strategy attempts to balance the
load by assigning an equal number of tasks to each workstation. Two static
assignment schemes, namely tiled subdivision and scattered subdivision were im-
plemented. In tiled subdivision, groups of contiguous scanlines form subsets of the
final image. Each node processor is assigned a particular subset. Because the view
point and number of objects define the computational complexity for tracing each
individual subset, this simple partitioning based on tilings of the screen often
creates severe load imbalances. Figure 5 shows an example image generated by this
method.

Scattered subdivision is another method of the static schemes which can im
prove on the load imbalance introduced in the previous method. The idea is to map
scanline i to processor i modp, where p is the total number of processors. As
neighboring scanlines should have similar complexity for tracing, the load can more
or less be scattered evenly among all the processors though there still may exist
some difference in the complexity of scanlines. As the node processors involved in
the process are time-shared workstations, the computation ability for each machine
depends very much on the number of users using it and how demanding the jobs
running are. Therefore, all the processors still may not finish the given task at
about the same time. Figure 6 shows an example image generated by this method.

The dynamic task assignment strategy that we adopted is a known parallelization
strategy and is known as “farming” [1]. In this case, a node is termed as a farmer.
Related methods have been proposed and are referred to in the literature as self
scheduling [19], [15], [8], [20], [16]. In this scheme, the host node distributes a chunk
of tasks to workstations on a “first come first served” basis. A new task will only be
assigned to a particular workstation node when that workstation has finished its
previous tasks. As a result, those faster workstations will be given more scanlines to
process. This dynamic scheme achieves better balance on processor utilization.

The size of each chunk of tasks to be assigned to nodes, every time these nodes
become idle, is an important parameter which can affect the overall performance.
A small chunk size can benefit from a more balanced load, however, will result in

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 119

WE 7 B

3

\

Figure 5. Image generated from tilted subdivision.

higher traffic between the host and the nodes and will result in making the host a
synchronization bottleneck, as well. Larger chunk sizes result in a poorly balanced
load, but they reduce host-node communication and synchronization overhead at
the host. Many different schemes for choosing the appropriate chunk size have
been proposed [15], [8], [20]. We selected a chunk size of one which consists of one
scan line in our application. The reason for this was to achieve well-balanced loads,
so as to make communication costs and network /protocol characteristics the focus
of our study.

Figure 7 shows an example image generated by the self-scheduling method.
Table I summarizes the comparison of these schemes.

4. Performance Model

Most researchers agree that a cluster of workstations have a good potential for
becoming a viable high-performance computing engine. Unfortunately, many as-
pects of parallel processing via a cluster of workstations are not well understood.
Some examples include determining the best computational granularity, decompo-
sition of tasks and data, number and types of workstations, significance of network
protocols, and load balancing techniques. In this section, we attempt to partially

120 HAMDI ET AL.

o, r im0 | kel

Figure 6. Image generated from scattered subdivision.

answer /address some of these questions and issues by presenting an analytical
performance model for a cluster of workstations connected by an Ethernet network
and executing a parallel ray tracing application.

One of the most important indicators of the strengths and weaknesses of a
parallel computing engine is its scalability with respect to the parallel applications
it is executing. Scalability is the study of the relationship between the number of
node workstations and the efficiency of the parallel process (i.e., speedup) [6], [7].
As a result, we attempt to understand the scalability of a cluster of workstations
connected to an Ethernet network with respect to its execution of the ray tracing
process in order to pin-point its strengths and weaknesses. We expect a reasonable
degree of speedup to result from running our parallel ray-tracing application on a
number of workstations connected via Ethernet. We, however, suspect that this
speed up will continue for up to a certain number of workstations and will
deteriorate for larger numbers of workstations. Accurately predicting the optimal
number of workstations that can perform a parallel job can be beneficial in
allocating the resources to do that job. Moreover, it would give us an indication on
the “goodness” of an Ethernet cluster of workstations. Consequently, we develop a
model for analyzing the scalability of our application on a cluster of workstations
connected via an Ethernet network. We validate this model in later sections by

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 121

ik 7 le, P

o []

Figure 7. Image generated from dynamic subdivision.

comparing its prediction with actual data that we obtained from running our
parallel ray-tracing program on a cluster of workstations.

As mentioned previously, there are numerous factors that directly affect the
performance of network of workstations. The inclusion of all these factors into a
single analytical model is a very complicated task if not an impossible one. As a
result, we simply concentrate on the effect of a subset of these factors. The effect
of the other factors is one of our future research directions, and will be presented
in our future publications. In this present model, we attribute four majors factors

Table 1. Comparison of the different ray partitioning schemes.

Task Partitioning Schemes

Static
Tiled Scattered Dynamic
Implementation difficulty Trivial Simple Moderate
Host-node communication Low Low High
Node-to-node communication No No No
System overhead None None Little

Load balance Low Acceptable High

122 HAMDI ET AL.

that affect the scalability of network of workstations, namely saturation, desynchro-
nization, protocol overhead, and network congestion [7].

e Saturation: means that a problem is split into so many subtasks, that the
parallelization overhead, mainly communication, outweighs the performance
gained by the parallel computation. This phenomenon can only be influenced by
choosing different algorithms or parallelization strategies.

e Desynchronization: occurs, if workstations have to wait for data overdue from
other machines. This may happen if sudden activities on the network cause a
specific machine to reduce the CPU share of the process which is part of the
parallel computation. This is a general problem for applications with strict
constraint on synchronization.

e Protocol overhead: even the best network technologies are not able to avoid
protocol overhead which is part of the communication needed for setting up
drivers and adjusting flow control parameters.

¢ Network congestion: occurs, if the communication load is close to the throughput
of the network. This phenomenon is a physical limitation of the communication
medium. As it is well known [18], this is more likely to be a problem with
CSMA /CD type networks like the Ethernet than with token-passing techniques.
With the random access technique of the Ethernet, message collisions might
occur when many stations try to transmit a frame approximately the same time.
This is the case during the communication periods of the parallel ray tracer and
may lead to limited speedup. Communication technologies in the future, offering
up to Gigabits per second bandwidth, might partially solve this problem, whereas
increases in workstation performance make this problem more prominent.

In order to get a better understanding of those effects, we developed an analytic
model for the parallel ray tracer. For the ray tracing process over an image of n
pixels and complexity ¢, yields a sequential computation time of ¢, = n X t(c)
where t(c) is the average time needed for generating a single pixel of an image
consisting of ¢ objects. The value of #(c) is directly related to the complexity of the
image. For example, #(c) = 0.376 msec for the 4-balls scene of Figure 8. To
calculate the elapsed time for the parallel computation, we integrated the overhead
due to communication, idling, and other work which is necessitated by the paral-
lelization of the ray tracer and would not have been performed by the sequential
ray tracer. This overhead is dominated by the total communication time, ¢,,,,, and
thus would be integrated into our model. Thus, the elapsed time of the execution

of the parallel ray tracer on p workstations, #,, can be calculated as:

[== 41 (1)

The communication time in our parallel ray tracer is mainly due to the transfer
of the results from the worker nodes to the host node. For an image of n pixels,
32n bits have to be transferred between the worker nodes and the host node. The

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 123

Figure 8. Test image consists of 4 balls with resolution 400 X 400 pixels.

constant 32 is the number of bits needed to store a single pixel. A pixel consists of
four attributes: red, green, blue and an alpha channel. Each is of size 8 bits. Hence,
a scanline contains 32n'/? bits if we assume that the image is square (i.e.
n'/? x n'/?). If the image is of size 300 X 300 pixels, a scanline contains 9600 bits.
An Ethernet frame contains 18 bytes for the header, and a maximum of 376 image
pixels. This is because of the restriction on the maximum frame size in the
Ethernet standard which is set to 1534 bytes. The frame length f is the quotient of
the number of bits of the frame and the cable transmission rate, which is
10 Mbits/sec in a standard Ethernet. Thus, f = 1.504 msec for our 376 image
pixels.

The modeling of the Ethernet in [18] offers the following formula for the
normalized transfer time, vy, of a single frame, assuming constant frame length f:

1+ (4e + 2)a X 5a* + 4e(2¢ — 1)a*
vy=pX + 1+ 2ea
2(1 = p(1+ (2e + 1)a))

(1 —e2r)

2
— +2ae” ! — 6a
p

+5 B 2(e Pt h=l — 1 4 g 2pe)

(2)

124 HAMDI ET AL.

where e is the base of the natural logarithm. The variable a = 7/f depends on the
architecture of the Ethernet, where 7 denotes the end-to-end propagation delay,
which we estimated to be 7.6 usec in our LAN. The variable p = Af denotes the
traffic intensity, where A is the total average traffic in frames per second. Our LAN
load monitor suggested the approximation that packet submission is equidis-
tributed during the average communication time ¢,,,,, because the mutual access
to the Ethernet causes desynchronization of the tasks. This will be valid for
communication phases with moderate number of collisions. However, for traffic
with heavy collisions, the assumption will merely produce an optimistic approxima-
tion. During one communication phase, 32n'/?/1516 frames (i.e., one scanline,
1534 (frame size) — 18 (header) = 1516 (data information)) are transferred. There-
fore, we obtain A = 32n'/2 /(1516 X t,,) and for the traffic intensity

3202 X f X
1516 x 1,,,,)

com

P(teom) =

Given frames of constant length f (in units of time), fy is the average transfer
time of one frame. We therefore get an equation for ¢,,, expressing the nonlin-
early behavior of the network.

32n'/?

teom = 516 < fr(P) (4)
Substituting Equation (4) into Equation (1), we get the value of the execution of
the parallel ray tracer, ¢,. Dividing 7, by ¢,, we get the speedup /scalability of our
model. This analytical model can prove very useful in predicting the speedups. The
predicted speedup can be used to project the maximum number of workstations
that can be used while preserving a positive speedup. Hence, it can give us a good
measure to determine the best computational granularity. As the model predicts,
and as we will show in our experiments in later sections, using a large number of
workstations can sometimes be counter-productive, that is, the speedup that they
achieve is lower than that of a smaller number of workstations. The main reason
for this is the low bandwidth of the Ethernet coupled with its collision behavior and
the high granularity of certain applications. Hence, this analytical model can save
us a lot of time running different experiments to find out the number of worksta-
tions that achieves the highest performance for our parallel ray tracer for a given
image with a certain size and complexity. Moreover, it gives us a direct measure of

the scalability of an Ethernet cluster of workstations.

m

5. [Experimental Evaluation
5.1. Variables to be considered
In order to accurately assess the potential of a cluster of workstations connected by

an Ethernet network, we experimented with the effect of various factors such as
the computational /communication load, task granularity, data partitioning strate-

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 125

gies, and load balancing schemes. All these factors have been embedded into our
parallel ray tracing application.

e Image complexity: This factor depends on both the size or resolution of the
image and the number of objects in the image. If the size is increased, the
number of pixels for the picture is larger. As the ray tracing process is to trace
rays passing through each pixel, the number of rays to be traced will be larger
and the computational complexity is thus increased. When there are more
objects in an image, more number of ray-objects intersection has to be calcu-
lated. Also, more secondary rays may be generated which introduces more rays
to be traced.

e Amount of data flow between host and nodes: This factor depends on the size of
the image. The data flowing are mainly the informations about the colors of each
pixel. As the image size increases, the amount of data will also increase.

e Number of node processors involved: This is the number of workers which share
the given task. As this number increases, the communication overhead will
become larger and the actual computation time becomes smaller.

e Data partitioning: This addresses the issue of how to distribute the image data
among the local memories of each workstation. In the image space subdivision
scheme, we assume that each workstation maintains the entire scene of an image
in its local memory.

To provide variation on these factors, test images of different sizes and different
number of balls are used. Figure 8 shows a typical test image with 4 balls and
having a resolution of 400 X 400 pixels.

5.2. Comparing the three types of image partitioning schemes

To compare the three types of image partitioning schemes, a test image containing
4 balls and with resolution of 400 X 400 pixels is used. This scene is traced with our
parallel ray tracer using different number of SUN IPX workstations connected by
an Ethernet network. The graph for the execution time is plotted against the
number of nodes (e.g. workstations) in Figure 9. Notice that 0 nodes means that
there is no node processor involved in the process. There is only one single serial
ray tracer running and no network communication is needed. For the case of 1
node, there is also one single serial ray tracer running but it is running on a remote
machine. So, network communication is involved with the host node. Here are
some important points which should be noticed from the graph.

e The dynamic subdivision seems to have the best performance no matter how
many node processors are involved in the process. It also provides a very stable
performance compared with the others. In general, the dynamic subdivision
scheme is the best while the scattered subdivision scheme is better than the tiled
subdivision scheme. These results completely agree with our expectation (refer to
the previous sections discussing the nature of the three methods). As a result, in

126 HAMDI ET AL.

time/second Execution time for different strategies
300 T T T

’scattered” ——
y i ‘tiled” +—
250 ! "dynamic’ -a— 4

200 |
150 |
100 |

50

number of node

Figure 9. The execution time of the three image partitioning schemes as a function of the number
of nodes.

order to take advantage of a cluster of workstations, dynamic load balancing
seem to be a must especially given the fluctuation nature of computation and
communication of a network of workstations.

e The increase in execution time for only one node processor (having a host and a
single node) shows the overhead in sending and receiving information between
the host node and the worker node. This is particularly costly for an Ethernet
network.

e The execution time generally decreases as the number of nodes increases up to a
certain point. This is what parallel processing intended to achieve. However, the
curve seems to be not very smooth as the load for the time-sharing workstations
do fluctuate quite a lot.

e The change in execution time decreases as the number of nodes increases. There
is a saturation point when execution time stops to decrease as more nodes are
added. As the number of nodes increases, overhead due to communication and
other steps which are not involved in the original serial ray tracer will dominate
the process. This saturation point is not that large for an Ethernet cluster of
workstations. As a result, our expectations have to be very modest when employ-
ing this parallel computing engine.

e Large fluctuation (e.g., when the number of nodes = 6) on the graph occurs
when particular node processors are shared by too many user’s tasks. This is one
of the disadvantages of using a network of workstations as opposed to using

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 127

dedicated parallel machines. We can notice that the dynamic subdivision scheme
is not affected by this because the heavily loaded workstations will be given fewer
jobs to process.

Having determined that the dynamic subdivision scheme is most efficient, later
experiments are all performed using this method.

5.3. Effect of image complexity

Three test images of size 200 X 200 pixels are used in this test. The three images
contain 3, 6 and 9 balls respectively. This represents different degrees of complex-
ity. Table II lists the execution times in seconds for the different images as a
function of the number of workstations employed. Figure 10 shows the variation in
speedup (with respect to the serial ray tracer) against the number of node
processors for different image complexities. It is easy to notice that the speedup is
generally higher for more complicated images. Hence, a higher image complexity
will introduce better performance for the parallel ray tracer. As mentioned in the
previous section, the increase in efficiency will become saturated when the number
of node processors involved reaches some point. From the graph, we can observe
that this saturation point seems to depend on the complexity of the image. For the
3-balls image, the speedup begins to fall when the number of processors reaches 5.
For the 6-balls image, the graph of speedup seems to flattened when the number of
processors reaches 8. For the 9-balls image, the speedup still keeps increasing for
all number of nodes. Fortunately, this is what we want since high complexity scenes
need all the performance they can get. Moreover, the speedup achieved with a
network of workstations is reasonably good especially given the fact that they are
interconnected by an Ethernet. Consequently, we can expect a good performance
from an Ethernet cluster of workstation mainly when the granularity of the task is
coarse and the computational complexity of each subtask is high.

5.4. Effect of image size
Again, three test images containing 4 balls are used in this experiment. They are of

size 100 X 100, 200 X 200 and 300 X 300 pixels. The variation in size not only

Table II. Execution times (secs) for different image complexities.

Number of Nodes 0 1 2 3 4 5 6 7 8 9 10
3 balls
Execution time 69 89 59 37 32 26 29 32 30 32 34
6 balls
Execution time 156 154 94 65 47 45 39 36 35 35 33
9 balls

Execution time 215 238 131 103 65 58 49 47 42 40 39

128 HAMDI ET AL.

speedup Speedup for different image complexity
5 L) L] L4 T

‘3.balls” ——

5.5
5
45t
4
3.5
3
2.5
2
1.5

1

0’5 L L 'l 1
0 2 4 [8 10
number of nodes

Figure 10. Effect of image complexity on the speedup of the parallel tracer.

affects the complexity, but also the amount of network data transmission (i.e.,
communication cost). Table III lists the execution times in seconds for different
image complexities as a function of the number of workstations employed. Fig-
ure 11 shows the variation in speedup (with respect to the serial ray tracer) against
the number of node processors for different image sizes. We can have similar
observation as that in the previous section: as the image size increases the speedup
increases. However, if the amount of data transferred between the host node and
worker nodes is too large, the communication time might dominate the whole
process. The reason for this result is simple. The execution time of the whole
process can be separated into two parts. One is the time spent on actual computa-
tion (i.e., the real ray tracing process) and the other is the time spent on

Table II. Execution times (secs) for different image sizes and different number of nodes.

Number of Nodes 0 1 2 3 4 5 6 7 8 9 10
100 X 100
Execution time 27 37 26 19 18 15 17 18 18 17 20
200 X 200
Execution time 114 119 67 44 38 33 28 30 28 28 30
300 x 300

Execution time 223 226 121 87 66 59 50 48 45 41 41

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 129

speedup Speedup for different image size
5.5 T Y T T

JA00x1007 ——
7200x200” —~—
7300x300" -8

5

4,5

4

3.5

3

2,8

2k

15}

16

0'5 L L L 'l
0 2 4 [8 10
number of nodes

Figure 11. Effect of image size on the speedup of the parallel ray tracer.

communication between the host and nodes. The first part just depends on the
complexity of the image. It is controlled by both the number of objects in the scene
and the size of the image. However, the other part grows as the number of nodes
increases. Each node has to spend some time to set up for the parallel process and
to transfer the data back to the host. When the number of nodes gets large, this
communication overhead dominates the process and the performance is affected.
Thus, we can conclude that the ratio of communication time to the computational
time is extremely vital in assessing the suitability of the cluster of workstation in
the execution of a parallel application.

5.5. Validation of the Analytical Model

In this subsection, we validate our analytical performance model presented in the
previous section with results obtained by experiments. Our model was implemented
to study the scalability of an Ethernet cluster of workstations. As mentioned
previously, our model does not capture all the potential affects that could be
encountered in a cluster of workstations. However, we attempted to emphasize the
major effects such as task granularity, computational complexity, communication
load, and network protocol characteristics. In this connection, we used our analyti-
cal model to predict the speedup that an Ethernet cluster of workstations can give

130 HAMDI ET AL.

us when executing a parallel ray tracing process of an image of size 300 X 300
pixels and 4-balls complexity. Figure 12 illustrates this result and compares it with
that obtained experimentally. Thus, we can see that it is quite close to the
experimental speedup. The slight difference between the two is due to the fact that
our analytical model did not take into account all factors affecting the perfor-
mance of an Ethernet cluster of workstations such as the workstation’s heterogene-
ity and the background load. These effects will be captured in our future work in
this direction. Moreover, this analytical model is not only used to verify the
experimental results but also to analyze the scalability of an Ethernet cluster of
workstations. This scalability can be used to project the maximum number of
workstations that can be used while preserving a positive speedup. Using a large
number of workstations can be sometimes counter productive, that is, the speedup
that they achieve is lower than that of a smaller number of workstations. The main
reasons for that are the low bandwidth of the Ethernet coupled with its collision
behavior and the high granularity of certain applications. Hence, this analytical
model can save us a lot of time running different experiments to find out the
number of workstations that achieves the highest performance for our parallel ray
tracer for a given image with a certain size and complexity.

7 | Experimental -o— E
Modeling -+--

Speedup

o 1 L L |
10 15 20
Number of Nodes

Figure 12. Scalability model of our parallel ray tracer for an image size of 300 X 300 pixels and 4-balls
complexity.

PARALLEL COMPUTING ON AN ETHERNET CLUSTER OF WORKSTATIONS 131

6. Conclusion

In this paper, we addressed the issue of evaluating the performance of an Ethernet
cluster of workstations in the execution of computationally intensive applications.
There are many factors that directly affect the performance and scalability of this
computing engine. Some of these factors are: the workstation architectures, the
network protocols, the communication-to-computation ratio, the load balancing
strategies, and the data partitioning schemes. We evaluated the performance of
this computing environment in the execution of a parallel ray tracing application
through analytical modeling and extensive experimentation. We also demonstrated
the strengths and weaknesses of an Ethernet cluster of workstations with regards
to the above factors. While all these factors have a direct effect on the scalability of
an Ethernet network of workstations, it is concluded that the main limiting factor
of this computing environment is the contention characteristic of the CSMA /CD
medium access control (MAC) protocol of the Ethernet network.

Acknowledgments

This work is supported in part by the Hong Kong Research Grant Council under
the grant RGC/HKUST 100/92E.

References

1. H. R. Arabnia and S. M. Bhandarkar, “Parallel stereo-correlation on a Reconfigurable Multi-Ring
Network,” The Journal of Supercomputing, Vol. 10, No. 3, pp. 243-270, 1996.

2. D. Badouel and T. Priol, “Ray tracing on distributed memory parallel computers: Strategies for
distributing computations and data,” In ACM SIGGRAPH 90, Course Note no. 28, pp. 185-198,
1990.

3. H. C. Delany, “Ray tracing on a Connection Machine,” In Int. Conf. on Supercomputing, pp.
272-278, 1988.

4. A. S. Glassner, An Introduction to ray tracing. Academic Press, 1989.

5. S. Green, Parallel Processing for Computer Graphics, Addison Wesley, 1991.

6. A. Gupta and V. Kumar, “The scalability of FFT on parallel computers,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 4, No. 8, August 1993.

7. M. Hamdi and C. K. Lee, “Parallel image processing on a network of workstations computing
environment,” Parallel Computing, Vol. 21., pp. 137-160, Jan. 1995.

8. S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A practical and robust method for
scheduling parallel loops,” In Proc. Supercomputing Conference, pp. 610-619, 1991.

9. T. Y. Lee, C. S. Raghavendra, J. B. Nicholas, “A fully distributed parallel ray tracings Scheme on
the Delta Touchstone machine,” In Proc. 2nd Int. Symp. High Performance Distributed Computing,
pp. 129-134, 1993.

10. T.Y. Lin and M. Slater, “Stochastic ray tracing using SIMD processor arrays,” The Visual Computer,
Vol. 7, pp. 187-199, 1991.

11. P. Krueger and R. Chawla, “The stealth distributed scheduler,” in Proc. 11th Int. Conf. Distributed
Computing Systems, pp. 336—343, 1991.

12. C. Montani, R. Perego and R. Scopigno, “Parallel rendering of volumetric data set on
distributed—memory architectures,” Concurrency: Practice and Experience, Vol. 5, pp. 153167, 1993.

132 HAMDI ET AL.

13.
14.

15.

16.

17.

18.

19.

20.

Parasoft Corporation. An overview of the Express system, 1992.

D. J. Plunkett and M. J. Bailey, “The vectorization of a ray tracing algorithm for improved
execution speed,” IEEE Comput. Graph. Appl., Vol. 8, pp. 52-60, 1985.

C. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: A Practical Self-Scheduling Scheme
for Parallel Supercomputers,” IEEE Transactions on Computers, Vol. C-36, pp. 1425-1439, Decem-
ber 1987.

T. Priol and K. Bouatouch, “Static load balancing for a parallel ray tracing on a MIMD hypercube,”
The Visual Computer, Vol. 5, pp. 109-119, 1989.

J. Salmon and J. Goldsmith, “A hypercube ray tracer,” In Proc. Third Conf. on Hypercube
Concurrent Computers and Applications, pp. 1194-1206, 1988.

M. Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis. Addison Wesley:
Reading, MA, 1987.

P. Tang and P. C. Yew, “Processor self-scheduling for multiple-nested parallel loops,” In Proc. 1986
International Conference on Parallel Processing, pp. 528—535, August 1986.

T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A practical scheduling scheme for parallel
compilers,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No. 1, pp. 87-98, January
1993.

